Published Papers

Aspherical Surface Measurement a Cost-Effective and Fast Ai Solution

Optical aspherical surfaces have become more widely used as they offer advantages such as improved image quality, compact design, increased light gathering, and reduced distortion. However, measuring aspherical surfaces presents challenges due to their non-spherical shapes. The primary difficulties include the complexity of surface geometries and the need for specialized metrology equipment. These challenges require advanced measurement techniques to ensure accurate characterization and quality control of aspherical surfaces in various applications. This paper introduces an innovative, AI-driven solution for the measurement of aspherical surfaces within the image space, offering a flexible optical metrology tool for measuring aspherical surfaces. This approach is characterized by its ability to deliver rapid and cost-effective integration without the need for custom, complex optics.

Aligning Reflecting Optics With Bessel Beams

Bessel beams have found use in the alignment of transmissive optics for some time. They are also used for the alignment of reflecting optics when used in the imaging mode, that is, when the wavefront is near spherical. However, there are cases where it would be useful to use the Bessel beam for alignment of far-off axis aspheres to order to get the asphere aligned close enough to its final position that light will go through the system in the imaging mode. In another mode, the Bessel beam is used to determine the normal to a free form surface.

A new approach to Wavefront Sensing: AI Software With An Autostigmatic Microscope

The use of artificial intelligence (AI) software for wavefront sensing has been demonstrated in previous studies [1], [3]. In this work, we have developed a novel approach to wavefront sensing by coupling an AI software with an Autostigmatic Microscope (AM). The resulting system offers optical component and system testing capabilities similar to those of an interferometer used in double pass, but with several advantages. The AM is smaller, lighter, and less expensive than commercially available interferometers, while the AI software is capable of reading out Zernike coefficients, providing real-time feedback for alignment.

Chapter 18 – Alignment of Off-Axis Parabolas

Although this is a chapter on off-axis parabolas (OAPs), I want to start with one more way of testing symmetric parabolas because it illustrates a point about off-axis alignment. Assume we have a symmetric parabola with no central hole and we want to minimize the obstruction due to testing. If we set the parabola up […]

Chapter 17 – Alignment of Symmetric Parabolas

I often receive requests for assistance with aligning parabolic mirrors, particularly off-axis ones. Interestingly, with the right tools, the actual alignment process is often quicker than mounting the optical alignment equipment. This observation led me to reflect on the tools themselves. Currently, no traditional method—whether using an autocollimator or an alignment telescope—provides an effective way […]

Using Image Symmetries to Uniquely Align Aspheric Mirrors to a Focus and Axis

The Point Source Microscope (PSM) is used to find five aberrations related to the symmetries of the autostigmatic image viewed when aligning aspheric mirrors to a point along an axis. These five aberrations exactly match in number the five degrees of mechanical freedom required to align the mirror to an axis and thus provide an exact solution to a unique focus and alignment to an axis. We show how the PSM is used to capture and analyze a set of images as the PSM is moved through focus using the symmetry properties of the image.
Worldwide Representatives

USA

 Innovations Foresight
4432 Mallard Point,
Columbus, IN 47201 USA
Telephone:
1-215-884-1101

Contact:
Customerservice@innovationsforesight.com

USA/INTERNATIONAL

UK & EU

Armstrong Optical
+44(0) 1604 654220
info@armstrongoptical.co.uk

All Asian Countries Except China

清 原 耕 輔   Kosuke Kiyohara
清原光学 営業部   Kiyohara Optics / Sales
+81-3-5918-8501
opg-sales@koptic.co.jp

Kiyohara Optics Inc.
3-28-10 Funado Itabashi-Ku Tokyo, Japan 174-0041

China


Langxin (Suzhou) Precision Optics Co., Ltd
1st floor, Building 10, Yisu Science and Technology Innovation Park, 100 meters west of the intersection of Xinhua Road and Weimeng Road, Kunshan City, Suzhou City, Jiangsu Province, 215345

Telephone: +860512-57284008
Contact: Wang Zengkun
+8617090133615
wangzengkun@langxinoptics.com

Australia & New Zealand

Mersenne Optical Consulting
aprakich@gmail.com

India


Fiber Optic Services
Joshi Pravin: Info@foservice.com

Optical Perspectives Group, LLC

Copyright ©
Website by CS Design Studios
Headquarters: 7011 E Calle Tolosa, Tucson, AZ 85750
Laboratory: 1661 S Research Loop, Tucson, AZ 85710