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Abstract  

The use of artificial intelligence (AI) software for wavefront sensing has been demonstrated in previous studies [1], [3]. 

In this work, we have developed a novel approach to wavefront sensing by coupling an AI software with an Autostigmatic 

Microscope (AM). The resulting system offers optical component and system testing capabilities similar to those of an 

interferometer used in double pass, but with several advantages. The AM is smaller, lighter, and less expensive than 

commercially available interferometers, while the AI software is capable of reading out Zernike coefficients, providing 

real-time feedback for alignment.  

 

Our AI software uses an artificial neural network (NN) that is trained to output the Zernike coefficients, or any other 

relevant figures of merit, exclusively from synthetic data. The synthetic data includes random Zernike coefficients for a 

parametric description of the wavefront, noise, and a defocus error to avoid any stringent accuracy requirement. Once 

trained, the NN yields Zernike coefficients from a single frame of defocused intensity. The feedforward architecture of the 

NN enables swift output of Zernike coefficients, eliminating the need for iteration or optimization during run time. 

Using the software with an AM allows for paraxial alignment of the object in the test cavity, with the real-time Zernike 

coefficients guiding the item into optimal alignment. This double pass test is not possible with most other types of 

wavefront sensors, as they are designed for single-pass use. Our results demonstrate that the test results obtained compare 

well with modeled results, and that errors in the AM can be removed by calibration, as in the case of interferometer 

transmission spheres. Furthermore, the simple defocused image of a source provides non-ambiguous phase retrieval, which 

competes with traditional wavefront sensors such as Shack-Hartmann (SH) sensors or interferometers. The AI software 

provides high dynamic range, sensitivity and precision [3]. This novel approach to wavefront sensing has significant 

potential for use in a wide range of applications in the field of optics. 

Keywords: Artificial intelligence, machine learning, wavefront sensing, field-dependent wavefront sensing, multi-source 

wavefront sensing, autostigmatic microscope, low cost fast wavefront sensing.  

1. INTRODUCTION  

Wavefront (WF) sensing holds significant importance in the quantitative evaluation of optical systems. Its applications 

span numerous fields, including metrology, optical alignment, adaptive (AO) and active optics (aO), astronomy, as well 

as ophthalmology, among others. Common wavefront sensors, such as the Shack-Hartmann (SH) wavefront sensor and 

the curvature sensing wavefront sensor [1], primarily employ pupil or near-pupil space wavefront sensing methodologies. 

The SH wavefront sensor necessitates the use of a lenslet array. However, these arrays can often be expensive and require 

precision in alignment. Moreover, the dynamic range of this sensor is restricted by the overlapping of images from adjacent 

sub-pupils. 



 

 
 

 

          

On the other hand, curvature sensing [2] allows the reconstruction of the complete wavefront from two carefully defocused 

images of a planewave (a point source at infinity). However, the results can be susceptible to issues like noise and the 

initial input conditions, and it necessitates a setup capable of near-simultaneous data collection. Additionally, solving the 

irradiance transport equation with iterative numerical methods can encounter local minima and convergence problems, 

particularly when dealing with substantial aberrations. Also, the defocus must be sufficiently large to ensure it 

encompasses the caustic region for irradiance transport equation to be valid. As such, curvature sensing is classified as a 

near-pupil space WF sensing technique. 

 
On the other hand, image space WF sensing provides an appealing alternative. It necessitates minimal or no additional 

hardware, leading to a unified optical path with the image plane. This feature eliminates the requirement for multi-path 

calibration and associated wavefront reconstruction residual errors. Phase diversity is a method commonly used for image 

space WF sensing. This approach hinges on at least two defocused images captured at distinct defocus positions near the 

focal plane, and it employs iterative phase estimation algorithms in real-time. 

Single image WF sensing, using phase retrieval algorithms for a known source, typically relies on iterative error reduction 

techniques, such as the Gerchberg-Saxton (GS) algorithm. However, the GS algorithm often struggles to achieve the exact 

solution after iterations, resulting in approximations. Furthermore, its convergence tends to be rather slow, typically 

characterized by plateaus where the error remains almost constant across many iterations. 

In this paper, we introduce an image space WF sensing approach using artificial intelligence, denoted as AIWFS [1]. It is 

capable of performing phase retrieval from a single defocused image, even under noisy conditions. This method boasts 

three highly desirable features: 

- Requires only a single image. 

- Fast processing (no iteration) at run time. 

- Whole field WF sensing. 

 

An artificial NN forms the core of our method and is trained solely on synthetic data. This data consists of simulated 

aberrated and defocused images, primarily utilizing point sources at, or near, infinity that essentially produce plane waves. 

While we could consider more complex sources like spherical waves or extended sources, for the purpose of this paper, 

we focus specifically on scenarios involving plane waves. 

These sources can be conceptualized as either artificial or real stars, aligning with our original intent for this technology: 

to aid in the alignment of telescopes or aO, as well as AO. 

The images we utilize are computed using scalar diffraction theory. Our NN serves as a function approximation tool, 

mapping single defocused images to their respective wavefronts, commonly expressed in Zernike annular polynomial 

coefficients. As a result, during runtime, there is no need for iterations, optimizations, or concerns about convergence for 

phase retrieval calculations. All the complex computations have been carried out during the training phase of the NN. 

When presented with a new single-defocused image of a star, the NN swiftly provides the related wavefront data (i.e., the 

Zernike annular polynomial coefficients). The chosen NN's feed-forward structure enables fast phase retrieval calculations, 

aligning well with video-rate wavefront sensing applications. 

Inherently, this method can access wavefronts in the entire field simultaneously when presented with a single defocused 

star field image. For the scope of this paper, we consider only monochromatic sources. This choice isn't a limitation of the 

technology but a strategy to expedite calculations. In real-world applications, we often deal with color filters or lasers. In 

scenarios involving color filters, the monochromatic calculations stay relevant when the filters have a bandwidth up to 

proximately 100nm or less. 
 
Firstly, we will outline the methodology and results within the context of telescopes. Following this, we will explore its 

application in an AM setup, in the form of a Point Source Microscope (PSM). The latter bears significant resemblance to 



 

 
 

 

          

a telescope operating in double pass mode when an artificial star is utilized. 
 

2. METHODOLOGY 

2.1 Background and concept 

The far field, intensity distribution of the monochromatic point spread function (PSF) is given by the square modulus of 

the two-dimensional Fourier transform of the complex pupil function: 

 

 PSF(u, v) =  |ℱ2𝐷{(P(x, y)}|2  (1) 

 

The complex pupil function P(x, y) contains information about the shape of the pupil, the transmission function and optical 

phase in the pupil.  In general, the complex pupil function is defined as follows: 

 

 P(x, y) = p(x, y)ejφp(x,y)  (2) 

 

where: p(x, y) = pupil amplitude transmission function, 

 φp(x, y) = the pupil phase function = 2W(x,y)/, and 

 W(x,y) = wavefront departure from the reference sphere. 

 

With the required scaling factors, the radial PSF becomes: 

 

 PSF(r′) =
I0

(λf)2
|T(ρ)|ρ=r′

λf⁄
2   (3) 

Where: 

 I0 = the irradiance in power/area incident on the pupil, 

  = operating wavelength, 

 f = focal length, 

r’= radial coordinate in the focal plane, 

 T() =  ℱ{P(r)} = Radial Fourier transform (Hankel transform) of the complex pupil function. 

Using equation 3, we can readily compute the monochromatic PSF for any phase distribution in the pupil. As demonstrated 

by Baudat [1], it is possible to normalize and sample the input data for general applicability across various optical systems. 

Practically speaking, it's beneficial to employ radial annular Zernike polynomials to construct a selective orthogonal set 

of aberrations most suitable for the task at hand. For instance, this methodology is particularly advantageous for aligning 

diverse types of optics, such as two-mirror telescope systems. Here, minimizing on-axis coma and balancing off-axis 

astigmatism ensures optimal secondary mirror alignment, and reducing spherical aberration optimizes mirror spacing. 

Additionally, the ability to identify astigmatic and trefoil terms proves valuable for enhancing field performance and 

detecting potential mechanical mounting stress. For these tasks, it is adequate to train the NN to identify only the nine 

Zernike terms listed in Table 1. 

It's important to clarify that this is not a constraint of the method itself. The methodology could be trained to recognize 

higher-order Zernike terms and atmospheric seeing parameters. The AIWFS technology has been used for Zernike 

polynomials up to the 8th radial order. The only limitations relate to the size of the NN database and the computing time 

required to process the input data and train the system. In most applications, we can disregard the piston term (time-

incoherent light, z0=0) as well as the tilt and tip (z1=0 & z2=0) of the wavefront. This is because we center the defocused 

image during the preprocessing step before feeding it into the NN. 

 

 

 



 

 
 

 

          

 

Name 

 

Index 

  

Radial Annular Polynomials 

    0 < 𝑟 ≤ 1            0 < 𝜖 ≤ 1             0 ≤ 𝜃 ≤ 2𝜋 

Defocus 𝑍3 (2𝑟2 − 1 − 𝜀2)/(1 − 𝜀2) 

Vertical 

astigmatism 
𝑍4 (𝑟2/√1 + 𝜖2 + 𝜖4) 𝑐𝑜𝑠(2𝜃) 

Oblique 

astigmatism 
𝑍5 (𝑟2/√1 + 𝜖2 + 𝜖4) 𝑠𝑖𝑛(2𝜃) 

Horizontal coma 𝑍6 [3𝑟3(1 + 𝜖2) − 2𝑟(1 + 𝜖2 + 𝜖4)]/ [(1 − 𝜖2)√(1 + 𝜖2)(1 + 4𝜖2 + 𝜖4)] 𝑐𝑜𝑠(𝜃) 

Vertical coma 𝑍7 [3𝑟3(1 + 𝜖2) − 2𝑟(1 + 𝜖2 + 𝜖4)]/ [(1 − 𝜖2)√(1 + 𝜖2)(1 + 4𝜖2 + 𝜖4)] 𝑠𝑖𝑛(𝜃) 

Primary spherical 𝑍8 (6𝑟4 − 6𝑟2(1 + 𝜖2) + 1 + 4𝜖2 + 𝜖4)/(1 − 𝜖2)2 

Oblique 

trefoil 
𝑍9 [𝑟3/√1 + 𝜖2 + 𝜖4 + 𝜖6] 𝑐𝑜𝑠(3𝜃) 

Vertical 

trefoil 
𝑍10 [𝑟3/√1 + 𝜖2 + 𝜖4 + 𝜖6] 𝑠𝑖𝑛(3𝜃) 

Secondary 

spherical 
𝑍15 [(20𝑟6 − 30𝑟4(1 + 𝜖2) + 12𝑟2(1 + 3𝜖2 + 𝜖4) − (1 + 9𝜖2 + 9𝜖4 + 𝜖6)]/(1 − 𝜖2)3 

 
Table 1. Definition of the nine radial annular Zernike terms using the Wyant-Creath [8] numbering 

convention, following Mahajan’s definitions.  These are the basic common terms used for generating 

synthetic data and for training the AI system described here with 𝜀 = 0 for the PSM experiments. 

In some context higher orders terms have been consider up to the Zernike radial order 8. 

 

2.2 Data generation and training 

The synthetic data, specific to a given optical imaging system (such as a telescope or a PSM), is computed using scalar 

diffraction theory and Fast Fourier Transform (FFT) to model the defocused image. For obstructed circular entrance pupils, 

we utilize the central obstruction parameter, denoted as 0<ε≤1. This parameter signifies the degree of obstruction as a 

percentage of the pupil diameter, D. This concept becomes particularly significant when evaluating a centered circular 

secondary mirror in the context of a telescope. Although this paper focuses on circular apertures (axially symmetric 

systems), the most common type, other shapes can also be accommodated. 

We have chosen to use the Zernike radial annular polynomials for articulating the WF phase errors (aberrations) across 

the entrance pupil. In relevant scenarios, we also consider the Fried parameter or coherence length (r0) for quantifying the 

strength of Earth's atmospheric turbulences, often referred to as 'seeing.' Various levels of noise are incorporated into the 

synthetic data to account for sensor, electronic, and shot noise, as well as scintillation. 

To train the ANN, we generate defocused images across predefined ranges of the Zernike coefficients, in accordance with 

the application and aberration budgets, as well as r0 values where applicable. Alternate strategies could involve directly 

sampling an aberrated wavefront. In such a case, the NN outputs would be the sampled wavefront itself, instead of the 

Zernike coefficients or other aberration terms. In this paper, we've opted for a parametric approach, which describes the 

WF error through the Zernike radial annular polynomials. While not a limitation of the method, we are primarily concerned 

with optical alignment and thus focus on the lower 3rd order aberrations, under the assumption of near-perfect optical 

surface figures. Monitoring these low-order aberrations is sufficient for our task, though higher-order aberrations could be 

taken into account, particularly when measuring optical surface figures and roughness. 

The NN training phase utilizes three datasets. The first is the learning dataset, which serves to optimize the NN (synaptic 

weights). This dataset is typically the largest, with anywhere from 500,000 to 1,000,000 samples or more. The second, the 

validation dataset, monitors the NN's generalization performance during the training process to prevent overlearning, 



 

 
 

 

          

containing between 10,000 to 50,000 samples. The third is the test dataset, utilized post-training to assess the model's 

generalization capability, performance, and accuracy. All datasets are generated from the same independently identically 

distributed uniform random variable simulations, spanning the range of Zernike coefficients and r0 values, when under 

seeing limited conditions. Figure 1 below illustrates the basic steps involved in loading and training the neural network. 

 

             
       Figure 1.  The basic steps for loading data and training the neural network (NN) to recognize 9 Zernike terms. 

 

2.3 Uniqueness of Phase Retrieval 

Beside piston z0 & the spatial shifts tilt & tip (z1, z2), which all are set to zero in our application, phase retrieval faces a 

last trivial ambiguity, the conjugate inversion, as shown from the pupil function P(x, y) cross-correlation, the OTF: 

 

        OTF(ζ, η) = P(x, y) ⊗ P(x, y) = P∗(−x, −y) ⊗ P∗(−x, −y)    (4) 

 

Where * denotes the complex conjugate operation. 

There are 2 pupil functions P(𝑥, 𝑦) leading to the same PSF: 

 

                                            P(x, y)         = p(x, y)ejφp(x,y)       (5) 

                                            P∗(−x, −y) = p(−x, −y)e−jφp(−x,−y)  conjugate inversion    (6) 

 

For a circular pupil p(x,y) is a real even function, the only ambiguity we have to handle is for the phase φp(x, y). This 

issue can be tackled by introducing a known phase modulation. The most straightforward and simplest method involves 

adding a defocus bias (Z3). While other types of modulation, such as spherical aberrations, could be used, in this paper, 

we confine our analysis to the application of defocus bias. 

 



 

 
 

 

          

Figure 2 presents a perfect PSF in the left images, and two aberrated PSFs with +3 waves (center images) and -3 waves 

(right images) of primary spherical (Z8) aberration respectively. The top row represents the in-focus situation (z3=0) with 

no phase modulation. The identical appearance of the two aberrated PSFs indicates the loss of phase sign. This ambiguity 

is resolved by adding 10 waves of defocus (Z3) bias, which acts as the modulation, as seen in the bottom row. Here, the 

two aberrated PSFs are clearly distinguishable. The requirement is a defocus bias that is significant enough to ensure there 

is always some degree of defocus with a known sign, even after considering factors like defocusing bias accuracy, field 

curvature, sensor tilts, and any other sources of defocus error. Contrary to curvature sensing, we don't need to be beyond 

the caustic region to fully recover the WF. Actually, we consider any defocus error as an aberration similar to any other, 

and we train the NN within a predefined range of defocus error. 
 

             
        
             Figure 2.  The top row corresponds to the in-focus situation (z3=0) with no phase modulation.   

             The two aberrated PSFs, with respectively +3 (center) and -3 (right) waves of primary spherical (Z8),  

             are identical, indicating that the phase sign has been lost. This ambiguity is resolved by adding 10 waves  

             of defocus (Z3) bias, serving as the modulation, as observed in the bottom row. 

3. EXPERIMENTS WITH TELESCOPES 

Several experiments have been carried out in the lab in double pass, and on the sky using real stars under seeing limited 

conditions [3]. 

3.1 Comparison with a Shack Hartmann wavefront sensor on an optical bench 

A compact refractor telescope, see figure 3, designed as an optical bench has been assembled, incorporating a pellicle 

beam splitter and a pinhole located in the telescope's focal plane, serving as an artificial star. The PSF images are captured 

either in or out of focus by a CMOS camera (ZWO ASI 1600MM). To restrict the light's bandwidth, we employed a red 

filter, thereby facilitating the use of a monochromatic model for training the ANN. Telescope features a single achromat 

with a clear aperture of 24mm and focal length of 300mm, which results to a f/12.5 system. The pinhole is illuminated 

with a white LED and a diffuser. 

 

A good flat mirror is positioned in front of the telescope aperture for double-pass measurements. The CMOS camera can 

be substituted with a 40x40 lenslet SH wavefront sensor from ALCOR SYSTEM, paired with its corresponding collimating 

lens to re-image the pupil. Whether using the camera for AIWFS or the SH sensor, the same light source and red filter are 

utilized, ensuring consistent working conditions at the same point on the optical path. This minimizes any discrepancy 



 

 
 

 

          

between the two wavefront measurements. The SH exposure time was set at 200ms to ensure sufficient signal-to-noise 

ratio (SNR) for each microlens, while the AIWFS CMOS camera exposure was set at 10ms. This setting is consistent with 

video rate and adaptive optics (AO) applications under seeing conditions. 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

           Figure 3.  24mm f/12.5 double pass refractor telescope with a pinhole, as an artificial star, and its CMOS camera 

 

The table 2 shows the Strehl’s ratio (SR), the WF errors, as well as the Zernike coefficients for the SH and the AIWFS 

approaches @650nm. They are in very good agreement, the maximum difference on the Zernike coefficient is 0.002 wave, 

or 1.3nm for astigmatism and secondary spherical. 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

  

 

             Table 2. Comparisons on a refactor telescope optical bench between a SH WF sensor and  

             the AIWFS approach @650nm (monochromatic model) 

 

Measurements 

(Zernike: Wyant’s index) 

Shack-Hartman AIWFS 

Strehl’s ratio (SR) 0.9864 0.9869 

RMS FW error 0.017  wave  (11.2nm) 0.018  wave  (11.7nm) 

PV FW error 0.127  wave  (82.2nm) 0.116  wave  (75.4nm) 

Primary Astigmatism  Z4+Z5 0.039  wave  (25.0nm) 0.041  wave  (26.7nm) 

Primary Coma              Z6+Z7 0.002  wave  (1.5nm  ) 0.003  wave  (2nm  ) 

Primary Trefoil            Z9+Z10 0.005  wave  (3.5nm  ) 0.006  wave  (3.9nm  ) 

Primary Spherical             Z8 0.002  wave  (1.4nm  ) 0.002  wave  (1.3nm  ) 

Secondary Spherical        Z15 0.021  wave  (13.4nm) 0.019  wave  (12.4nm) 



 

 
 

 

          

3.2 Wavefront analysis using an actual star under seeing limited conditions 

This work was principally driven by the application of aligning, also known as collimating, multi-mirror telescopes using 

stars as a source. Two additional considerations surpassing the laboratory measurements presented here apply to this 

application [3]. 

Firstly, the AIWFS system must be trained to handle an obscured aperture, and depending on the optical configuration, 

this might also involve training for additional structures in the pupil, such as spider vanes. 

 

The second consideration pertains to atmospheric seeing. Kolmogorov's turbulence theory provides the relationship 

between Fried's atmospheric coherence length parameter r0 and the Full Width at Half Maximum (FWHM), denoted as β, 

of the seeing-limited star image, expressed in radians. 

 β ≅ 0.98 λ/r0 (7) 

 

The blurred stellar profile is best represented by a Moffat function. However, for most practical applications, a Gaussian 

function offers satisfactory results when calculating defocused star images and it is particularly easy to implement. Using 

equation 7, the seeing-induced Gaussian kernel width, represented by σ and measured in radians, can be determined as 

follows: 

 

 σ =
β

2√2ln (2)
≅ 0.42 

λ

r0
 (8) 

 

Under the sky, data can be captured with exposure times ranging from a few seconds up to 100 seconds. This produces a 

time-averaged PSF that can be matched by the AI system to a database of low-pass Gaussian filtered defocused star images. 

These images are calculated using equation 3 and blurred according to the bandwidth limit imposed by equation 8. The AI 

system can be trained not only to report the desired Zernike terms but also to output the Fried's parameter r0, for monitoring 

seeing quality. 

 
Figure 4 showcases the 2D WF heat maps (illustrated with peaks in red and valleys in blue), alongside the corresponding 

PSFs derived from an actual star (with r0 = 4.9 cm at 656nm). These were captured using a Schmidt-Cassegrain telescope 

with a 559mm aperture at an f/9.1 ratio. The heat map and PSF on the left were obtained through a 40x40 lenslet Shack-

Hartmann wavefront sensor supplied by ALCOR-SYSTEM. Conversely, the figures on the right display the results 

produced by the AIWFS approach, which utilized a single defocused image of an actual star captured by a ZWO 

ASI1600MM monochrome CMOS camera. In both cases, data was collected using a red filter featuring a central 

wavelength of 656nm, a bandwidth of 6nm, and an exposure time of 5 seconds. These measurements were conducted at 

the DOMAS–RGNext facility in Patrick Space Force Base, Florida, with official disclosure permission granted by Range 

Generation Next. 

 



 

 
 

 

          

                                           
                               

                              Figure 4.  559mm aperture at f/9.1 Schmidt-Cassegrain telescope WF heat plots 

                                    and PSFs using an actual star (r0 = 4.9 cm). Left with a Shack-Hartmann,  

                                    right with the AWIFS approach. 5 seconds exposure @656nm for both cases. 

 

Table 3 below details the basic aberrations at 656nm, presented in terms of Zernike annular polynomial coefficients. 

Despite the challenging seeing conditions and short exposure time (5s), the maximum discrepancy is only 0.06 waves, or 

39nm, equivalent to a root mean square (rms) of 0.01 waves, or 6.6 nm rms. For comparison, the diffraction limit (SR = 

80%) corresponds to a rms WF error of roughly 0.075 waves rms, or 49nm rms, which is about 7 times greater than the 

observed maximum difference. The data from both sets demonstrates a solid match, implying that this telescope may 

require some optical realignment. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
             Table 3. Comparison between a SH WF sensor and the AIWFS approach under  

             seeing-limited conditions on a 559mm f/9.1 Schmidt-Cassegrain telescope @656nm.  

            The data disclosure was authorized by Range Generation Next at Patrick Space Force Base, Florida. 

Measurements 

(Zernike: Wyant’s index) 

Shack-Hartman AIWFS 

Strehl’s ratio (SR) 0.14 0.19 

RMS FW error 0.277  wave  (182nm) 0.271  wave  (178nm) 

Primary Astigmatism  Z4+Z5 0.96  wave  (630nm) 0.91  wave  (597nm) 

Primary Coma              Z6+Z7 0.98  wave  (643nm  ) 0.98  wave  (643nm  ) 

Primary Trefoil            Z9+Z10 0.05  wave  (33nm  ) 0.11  wave  (66nm  ) 

Primary Spherical             Z8 0.05  wave  (33nm  ) 0.11  wave  (66nm  ) 



 

 
 

 

          

4. AUTOSTICMATIC MICROSCOPE 

4.1 Description and concept 

The Point Source Microscope (PSM) is an autostigmatic microscope (AM) [4] that also functions as an autocollimator and 

a reflection type inspection microscope [5]. As an autostigmatic microscope the PSM is used primarily for the alignment 

of optics by precisely locating the centers of curvature of optical surfaces with a lateral resolution of < 1 µm. When the 

PSM is focused at the center of curvature of a surface or optical system it simulates the use of an interferometer in a double 

pass test, the only difference being the PSM images the very small focal spot while the interferometer images the pupil of 

the surface being tested. The light path of the PSM focused at the center of curvature (CC) of a sphere is shown in the 

figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

             

                      Figure 5. Light path in the PSM focused at the center of curvature of a spherical mirror 

                      to show the similarity with a double pass interferometer test setup  

 

Because the optical setup is identical to using an interferometer it made sense to see if the PSM could be used as a WF 

sensor by simply adding additional sophisticated software implementing the AIWFS technology. There are at least 2 

obvious optical advantages in addition to some hardware and cost advantages over using an interferometer. Optically, 

there are situations where aberrations are the only reasonable method of alignment such as aligning a parabola to a return 

flat mirror. Under most situations this type of alignment is impossible to do looking at centers of curvature and foci so 

minimizing aberrations is the only choice possible. The other optical advantage is that if a surface has been distorted in 

assembly being able to measure the effect on the WF during alignment means that corrective action is possible. This saves 

finding the defect during a final test and having to scrap or rework the assembly.    

4.2 Modelization and specificity 

The AIWFS technology has predominantly been applied to the alignment and evaluation of telescope optics, utilizing 

either actual or artificial stars, via a dedicated software called SkyWave (SKW). SKW serves as a metrology tool that 

detects defocused stars in user-provided images (monochrome FITS file format) and feeds this information into a 

specialized NN, or mathematical model, specifically designed and traained for a given telescope. The software computes 

all the essential Zernike coefficients (typically third-order aberrations) and provides quantitative analysis and data, 

including the PSF, MTF, and EE, as well as field-dependent aberration maps. In this scenario, the incoming light is 

essentially a plane wave, illuminating the entrance pupil uniformly. Figure 6 depicts a pair of SKW screenshots analyzing 

a star field from a single FITS image. 



 

 
 

 

          

                  
 

                  Figure 6.  Two screenshots from SkyWave (SKW). The top image showcases a 3D wavefront of  

                  a star located near the center of the star field image. The bottom image displays the map of the  

                  vertical primary astigmatism Zernike annular coefficient across the entire field, computed using  

                  55 stars throughout the image.     
           

In order to evaluate the AIWFS technology with the PSM and SKW basic adjustments are required. The strategy of reusing 

SKW is beneficial as it provides a rapid prototyping solution and proof of concept before considering a more dedicated 

software implementation for the PSM. However, this choice also presents some limitations. 

 

SKW, when calculating WF errors from a single defocused image of a star (be it real or artificial) for an astronomical 

telescope, relies on a model of an optical system that differs significantly from what is present in the PSM. These 

differences were not entirely evident at the outset. For a telescope, starlight uniformly illuminates the entrance pupil under 

all conditions, while in the PSM, the illumination originates from the free space end of a single-mode optical fiber. This 

creates a Gaussian intensity distribution with a Numerical Aperture (NA) of 0.1, incident on a collimating lens with a 30 

mm effective focal length (efl), resulting in a beam waist of 3mm. The lens is stopped at 8mm, leading to a truncated 

Gaussian beam. This variation in illumination implies that the NN must be trained for this case, which constitutes a model 

distinct from that of the telescope. 

Another distinction lies in the location of the effective stop in each case. With a telescope, the f-number (f/#) of the cone 

of light incident on the camera remains constant, whether the telescope is focused on a star or defocused by moving the 

camera further from the secondary or objective to produce the out-of-focus image utilized by SKW. The situation in the 

PSM is similar if a spacer is added to defocus the camera. However, if the defocus is created by adjusting the PSM's 



 

 
 

 

          

proximity to the test surface, thereby generating a defocus bias aligned with the software's expectations, the degree of 

necessary adjustment is contingent on the focal length or magnification of the microscope lens in use. 

This same requirement means that we must use an objective on the PSM that underfills the surface under test. Otherwise, 

the pupil of the surface would determine the f/# of the light cone reaching the camera. This means that the magnitude of 

the aberrations will be less than the total error in the surface being tested in all cases. This is not a problem when aberrations 

are used for alignment because for alignment the goal is to find the alignment that minimizes the aberrations. 

 

The use of the SKW software introduces another consideration, paralleling the case of utilizing an interferometer. Neither 

the optics in an interferometer nor those in the PSM are perfect. In both situations, the instruments need calibration for 

optimal performance. Just as in the interferometer scenario where the numerical aperture (NA) of the transmission sphere 

acts as the stop, the Random Ball Test [6] could be the most suitable method for calibrating the PSM, where the NA of the 

objective limits the cone of light reaching the camera. Ultimately, the software and the corresponding mathematical model 

learned by the NN could be appropriately parameterized to accommodate the characteristics of the surface being analyzed. 

 

Despite the inherent limitations and differences when applying SKW with a PSM, the initial results are highly encouraging. 

They suggest that AIWFS can be effectively implemented with a PSM for optical part alignment and WF sensing across 

diverse applications. This approach offers a unique, compact, and cost-effective solution for obtaining quantitative data 

on optical aberrations and WFs, thereby eliminating the need for an interferometer or dedicated wavefront sensors. 

 

4.3 Test and results 

We established an optical setup utilizing a PSM and a spherical concave mirror with a 100mm radius. To ensure full 

illumination of the mirror under all test conditions, we selected a microscope objective with an NA of 0.1. The stop is 

positioned at the level of the PSM's collimation lens, resulting in an 8mm beam. Given the PSM tube lens has an effective 

focal length (efl) of 100mm, this corresponds to an f/12.5 system. There are two methods to defocus the image, as discussed 

in the previous section: one involves adding a spacer in front of the PSM camera, thus shifting the image plane away from 

the tube lens focal plane; the other involves moving the PSM away from the mirror’s CC. Equation 9 outlines the necessary 

spacing S for the former approach. 
 
                                                                         S = B16√3λf#2            (9) 

 
In Equation 9, B represents the defocus bias or the phase modulation, λ represents the wavelength, and f# denotes the f-

number of the imaging optics. For the PSM, we set λ at 640nm and f# at 12.5 (tube lens). The standard SKW mathematical 

models are trained with B set to 4.5 wave rms, which leads to a spacing of 12.471mm. 

In the second approach, the PSM - initially focused at the mirror's center of curvature (CC) - is shifted away through axial 

translation by a certain ∆Z distance, in either direction. In the first approximation, there's a simple relationship outlined in 

Equation 10 between ∆Z and the motion of the image plane ∆I on the PSM's camera side. 

 

                                                                          ∆I = 2 (
f#𝑡

f#0
)

2

∆Z                                         (10) 

 

Where f#𝑡=12.5 represents the PSM's tube lens f-number which images the beam onto the camera, and f#0 refers to the f-

number of the PSM's microscope objective illuminating the spherical mirror, or any other target of interest. If the PSM is 

moved closer to the mirror, this results in an intra-focal defocused image.  

For a microscope objective NA=0.1, in the air, 𝑓#𝑜 = 5, resulting to a ∆Z = 
12471

2
(

5

12.5
)

2

= 0.998mm for 4.5 wave rms 

of defocus bias (∆I = 12.471mm). 

 

A more precise Zemax simulation of the complete PSM optics suggests an axial translation, ∆Z, of 1.215mm in this context 

(B=4.5 waves rms). As long as the PSM's axial translation from the mirror's CC remains much smaller than the mirror's 

radius, we should expect a linear relationship between the defocus Zernike coefficient z3 and ∆Z, with a slope of 4.5/1215 



 

 
 

 

          

= 0.0037 wave rms of defocus change per micron of PSM axial translation. The smaller the mirror's radius, the smaller the 

f#0 of the required PSM’s microscope objective for full illumination of the mirror. This, in turn, leads to more sensitive 

detection of any axial translation from the coefficient z3 value provided by SKW, since the slope of equation 10 becomes 

steeper. This sensitivity is also applicable for other aberrations in the context of lateral translation or tilt of the PSM. 

Figure 7 showcases the value of the defocus Zernike coefficient z3, produced by the SKW's NN mathematical model, as 

a function of the axial PSM translation. This translation is toward the mirror and away from its CC where the PSM was 

initially focused (the axial translation origin). The black dots represent the measurements, while the dotted line illustrates 

the best linear fit. The line crosses zero at -1.261mm (we are intra-focal), which is close to the Zemax calculation reported 

above, which would be -1.215mm (we are intra-focal). The discrepancy is likely due to tolerances of some PSM 

components and measurement errors. 

 
                  Figure 7.  Defocus Zernike coefficient z3, in wave rms, versus the PSM axial translation, in micron, 

                  away from the mirror’s CC and toward it. Black dots are the z3 values output by the SKW PSM NN 

                  mathematical model. The dotted line is the best fit: Slope = 0.0036 wave rms per micron, zero-crossing  

                  at -1261 microns. 

 

The slope of the best linear fit is 0.0036 wave rms per micron, which aligns closely with the theoretical value of 0.0037 

from the Zemax calculation. 

Figure 8 showcases the relationship between a lateral translation of the PSM away from the mirror's center CC in the 

horizontal direction (measured in microns) and the horizontal coma Zernike coefficient z6 (expressed in wave rms). The 

black dots represent the measurements, while the dotted curve corresponds to the expected values derived from simulation. 

The measurements are aligned with the expected Zernike coefficient z6. 
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                  Figure 8.  Horizontal coma Zernike coefficient z6, in weave rms, versus the PSM lateral translation 

                  (horizontal), in micron. Black dots are the z6 values output by the SKW PSM NN mathematical model.  

                  The dotted line is expected values form simulations. 

 

Figure 9 displays defocused images corresponding to lateral PSM translations of 0, +100, and +200 microns. An observable 

shift and gradient of the image's brightest portion towards the edge is evident, indicative of coma in a Gaussian beam. 

 

 

                    
                       Figure 9.  Defocused images for a PSM lateral translation of 0, +100 and +200 microns 

 

5. CONCLUSIONS 

Despite being initially designed and optimized for telescopes, the SKW software has proven to be very promising when 

used to measure WF with a PSM. The results presented in this paper are preliminary, proof of concept, more work needs 

to be done, but clearly, they indicate a great potential. The image-space WF sensing capabilities of the Artificial 

Intelligence WF Sensing (AIWFS) technology, as implemented in SKW, are versatile and can be adapted for many 

applications and configurations, provided the necessary modeling and parameterization are executed. 

As a software-only solution, it is inherently flexible and cost-effective, enabling the reuse of cameras already present in 

many systems, like the PSM. This not only makes it a practical choice but also one that encourages sustainable use of 

resources which is quite critical in applications like aerospace. It's important to note that, by design, this technology 

provides a unique ability to perform WF sensing across the entire field of view in a single instance, using just one image, 
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as long as multiple defocused sources are available. This feature sets it apart by enabling comprehensive and efficient field 

dependent data acquisition and analysis. 

The next exciting phase is the development of a dedicated PSM WF sensing software, based on the AIWFS technology. 

This evolution promises to further elevate the measurement and analysis capabilities with the PSM and offer an interesting, 

cost effective, very compact as well as flexible alternative to traditional WF sensing approaches, such as interferometry or 

SH sensors and alike. 
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