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ABSTRACT  

Measuring the quality of alignment of an assembled compound lens is often necessary. This raises the question of what 

axis to use as a reference axis for this measurement. We suggest that the reference axis should be the optical axis of the 

assembled system and that this axis is unique for each assembly. 
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1. INTRODUCTION  

We intended to focus on finding the optical axis of imaging optics assembled in a cell so the axis could be used as a 

reference axis against which the misalignment of centers of curvature could be related. A more pressing need is the 

alignment of modules of optical components for guiding light from a source to a location where the light interacts with 

another object for material processing or atomic cooling. Along its path from source to the point of interaction, the light is 

often “prepared” with passive and active optical components to interact more efficiently with glass for scribing or atoms 

for cooling. This is a different kind of alignment from stacking lenses in a cell for imaging purposes. This alignment is all 

on an axis, simply getting light to go straight through a system with minimal distortion. For this reason, the paper will 

focus on the 3D tabletop alignment of optical components, but the topic still relates to aligning the optical axes of individual 

components, as would be the case for lenses in a cell. 

 

We use a Bessel beam as the reference axis for alignment because it propagates through optics as an ABCD ray [1,2]. 

Since this is the main supposition of this paper, we show that the beam propagates as ABCD matrix optics [3,4] indicates 

and matches the theoretical results of physical optics propagation analysis. Furthermore, a Bessel beam's unique qualities, 

such as its no-diffracting nature and the small size of its central peak, make it well-suited as a reference axis. Coupled with 

the ABCD assumption is that all angles and distances from the reference axis are small, so the calculations are considered 

paraxial. 

 

The paper is organized with a section describing a Bessel beam followed by proof that a Bessel beam propagates as an 

ABCD ray. Additionally, we show that the ray can be diffracted into multiple beams at specific angles so that relative ray 

angles are known after propagation through each component. We then show how a first lens is aligned precisely to a Bessel 

beam and how additional lenses are aligned to the first by following the undeviated beam. 

2. WORKING DEFINITION OF A BESSEL BEAM 

We need a working definition of a Bessel beam because we draw a correspondence to an optical ray traced using ABCD 

matrix optics. When looking at the Bessel beam intensity pattern in a plane perpendicular to its propagation, we see not a 

ray but a locus of points formed by the constructive interference of wavefronts symmetric about the Bessel beam's 

propagation direction.  

 

Because this locus of constructive interference propagates like an ABCD ray, it is a useful concept to think of the Bessel 

beam as a ray that geometrical optics describes, but it is not a ray in a conventional optics sense. This difference is important 

in understanding the propagation behavior of the Bessel beam because there are instances where you observe the Bessel 

beam behaving in ways that real, physical rays do not. The value of the concept of Bessel beam propagation gets lost if it 

is thought of as a real physical ray rather than a locus of points of constructive interference. 
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An example of this is looking into a lens with an autostigmatic microscope to find the second principle plane. The 

microscope moves the geometrical optics distance from the lens surface to the principal plane, yet theoretically, the 

distance should be about 35% less because of the index of the glass. While this difference between the Bessel beam locus 

of points and real rays is confusing, it is also very useful. In this example, you do not have to think about the index of the 

glass; you are directly measuring the distance to the principal plane, the difference between the effective and back focal 

distances. 

 

3. PROOF THAT A BESSEL BEAM BEHAVES AS AN ABCD RAY 

 
In recent theoretical work [5], Zhaowei Chen showed that using Zemax physical optics ray propagation or a Fresnel 

propagation model in MATLAB, he got the same result. In this case, his model was that of a quasi-Gauss-Bessel beam 

(QGB) in the sense that the beam was generated with a zone plate of evenly spaced concentric circles illuminated with a 

spherical wavefront produced by a Gaussian intensity distribution at the end of a single more fiber. As opposed to a pure 

Gauss-Bessel beam produced with a plane wavefront and having a finite length and a constant diameter central core, the 

QGB is much longer than a true Gauss-Bessel beam. The central core slowly increases in diameter, as do the surrounding 

rings, as it propagates. These properties are well illustrated by Dong and Pu [6]. 

 

The theoretical model also agrees with the experimental result that the central core expands in diameter with propagation 

distance to the limits of the experiment's resolution. To further test these results, a lens was inserted in the QGB and 

decentered by controlled amounts, and the deviation of the QGB was measured as a function of propagation distance. 

Again, the experimental results matched the theory to about 1%, on the order of the calibration of these various components 

of the experimental setup. 

 
3.1 Additional proof of QGB propagation as an ABCD ray 
 

A low spatial frequency (4 lp/mm) linear grating was inserted in the QGB to see what would happen. If one assumed the 

Bessel beam behaved as an ABCD ray, one would expect the beam to be diffracted into +/- odd orders, which is exactly 

what happened. Fig. 1 shows the 0 and +/- 1st order QGB core spots 100 mm above that grating that are +/- 255 um on 

either side of the 0 order. 

 

 
 

 

 

 

 

 

Fig. 1 Zero order QGB with 1st order diffracted beams on either side 

The 4 lp/mm grating gives a diffraction angle of 2.56 micro radians at the 640 nm wavelength used for illumination. At 

100 mm from the grating, the theoretical separation is 256 um while the measured spacing is 255 um. (Higher order 

diffracted beams were also present but were much less intense.) 

 

3.2 Effect of adding a lens in the diffracted beams 
 

Since this experiment worked so well, the next step was to add a lens on an x, y, and z stage to the setup, resulting in the 

arrangement shown in Fig. 2.  

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 A schematic diagram of the experimental setup (left), and photograph of the hardware (right) 

 

When a 125 mm efl lens was placed about 125 mm from the grating, and a PSM autostigmatic microscope [7] was focused 

on the nominal principal plane of the lens, the diffracted ± 1st order beams were separated by 314.5 um when they were 

predicted to be separated by 320 um if the lens’ principle plane were precisely 125 mm above the grating. We varied the 

lens height in 2 mm steps around a zero height taken as the upper surface of the lens. The measured spot separation versus 

lens height about the zero is shown in Fig. 3. 

 

The lens is moved axially, and the ± 1st order ray intercepts with the lens change separation as the lens height changes. 

The crossing of the curves at roughly 125 mm above the lens has no significance. Rather it is the slopes of the lines of the 

separation of the rays versus height that is important. When these slopes are plotted versus the lens height above the 

grating, the zero crossing is at 1.06 mm, as seen in Fig. 4, indicating the lens was too close to the grating for the principle 

plane to be at exactly 125 mm. It must move 1.06 mm farther from the grating to be precisely at the principal plane. 

 

This simple experiment shows directly that the QGB behaves like an ABCD ray. As significant as this is, it is more 

significant that this is a method of measuring collimation with a very low NA beam. The effective NA of the ± 1st order 

rays incident on the lens is 0.00256. Diffraction theory would say measuring collimation to sub-mm precision is impossible 

with this low an NA. It also shows that these rays give sufficient information to derive the ABCD matrix elements of all 

the lenses preceding where the rays were measured. [5] 

 

Because the diffracted rays are sufficient to calculate the elements of the ABCD matrix as each new optical element is 

added to a chain of elements, the matrix can be checked against the ABCD matrices of the design to see if the spacings of 

the elements are correct in a functional manner rather than simply measuring the physical distance between elements. This 

improves the confidence that a system is correctly assembled step by step rather than having to wait for the testing of the 

entire final assembly. 
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Fig. 3 Slopes of 1st order diffracted rays exiting lens                      Fig. 4 Slope of exiting rays vs. distance of the lens from the linear                        

                                                                                                                   grating with zero near the principal plane  

 

4. USING A BESSEL BEAM TO ALIGN MULTIPLE ELEMENTS 

 
4.1 The optical axis of a lens   
 

The optical axis of a single element is the line between the centers of curvature of the two surfaces. This definition 

means that a single ray coaxial with the optical axis is normally incident at both surfaces and propagates through the lens 

undeviated in position or angle. For a multi-element lens, we can still use this concept of no or minimum deviation to 

define the optical axis of a lens. From a practical view, this definition has a weakness in that when a lens is rotated about 

an axis perpendicular to the optical axis where the intersection of the axes is within the lens, a single optical axis ray is 

relatively undeviated for small rotation angles. This is why we also need to access a center of curvature of some surface 

within a lens of one or more elements to align it with a reference axis as precisely as possible. 

 

4.2 Precise alignment of a single element 
 

If a single ray passes through the nodal point of a single element, the lens barely deviates the ray if it is not tilted far from 

its optical axis, as shown in Fig. 5. To precisely define the axis of the lens in a centering instrument such as a PSM, the 

PSM must simultaneously be focused at one of the centers of curvature. Besides the Bessel beam, there is no other datum 

to focus on, and the long optical lever arm gives good angular precision. However, a useful center of curvature is often 

only accessible by looking through another surface. For example, in Fig. 5, the accessible center of curvature of the first 

surface must be viewed through the second surface and appears as the optical center of curvature due to the power in the 

second surface as shown with the green lines in Fig. 5. 

 

When a Bessel beam is used as a single gut ray, or centered ray from infinity, and is centered on the PSM before inserting 

a lens, we know that the ray passes through the nodal point when the lens is inserted in the beam and the ray is again 

centered on the PSM. To center the lens precisely, the PSM must be focused on the plane of the optical center of curvature. 

At this axial location, both the Bessel beam and the optical center of curvature are visible simultaneously because the 

PSM's light source illuminates the curvature's optical center. The lens is free of tilt and decenter when both the transmitted 



 

 
 

 

Bessel beam and the reflected spot from the center of curvature lie on the crosshair of the PSM. This method uniquely 

defines the singlet element's optical axis, particularly when the second center of curvature is inaccessible. 

 

Consequently, it is possible to install the first element of an optical assembly perfectly aligned because sufficient degrees 

of freedom exist to decenter and tilt the lens to align its optical axis to the initial Bessel beam. Then, the first element's 

optical axis and the co-axial Bessel beam become the reference axis for all the remaining alignments.  

 

 

 

 
 

 

 

 

 

 

 
Fig. 5 Untilted and tilted lens showing the gut ray is virtually undeviated when the lens tilts about the 2nd nodal point 

 

4.3 Adding additional lens elements 
 

In the upper part of Fig. 6, we assume that the first lens is perfectly aligned to the reference Bessel beam using the technique 

described above to ensure that both the Bessel beam and the center of curvature of the first surface are centered on the 

PSM crosshairs. When this is the case, the PSM is moved to the back focus of the lens, and the grating producing the 

Bessel beam is used as an autocollimating flat mirror. This makes it possible to locate a ball at the back focus to < 1 µm 

in x, y, and within ±2 µm in z using a 10x objective on the PSM. If one wanted to place a spatial filter or a grating to 

diffract the beam at this location, this is an easy, precise method to locate the spot. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Method of aligning a first element in tilt and decenter to a reference Bessel beam where the necessary degrees of 

freedom are available and then checking the alignment by moving the PSM to the focus of the lens (upper), adding a 2nd 

element using a center of curvature and the Bessel beam (middle) and checking the alignment of the pair (lower) 

 

The second element is presumed to be perfectly aligned, and the Bessel beam propagating through it is now used as the 

reference axis for the next lens. It is possible to double-check the alignment by removing the objective from the PSM and 

replacing the ball in its holder where the two lenses focus. The PSM is aligned in angle, so the light reflected from the 

center of the ball is centered on the crosshair. Then, the ball is removed, so the light reflects off the plane grating. If there 



 

 
 

 

is perfect alignment, the light from the grating will also focus on the PSM crosshair. This dual use of the PSM as an 

autostigmatic microscope and autocollimator makes it possible to double-check almost all steps to 3D alignment. 

 
 

4.4 Adding additional elements assuming only one degree of freedom 

 
In 4.3, it was assumed that we could align the second element in tilt and decenter, as is the case with tabletop alignment. 

While, in theory, we can always align the first element to the cell perfectly, it is usually impossible to do this for the next 

elements mounted in a cell in all but the highest-quality lenses. Usually, the second element is constrained by the seat of 

the curved surface is sitting on, or the flat seat edged on the lens. Here, we limit the discussion to the convex surface being 

constrained by the seat and assume the seat is slightly decentered relative to the Bessel beam axis propagating from the 

first element. Given the constraint of the decentered seat, what is our best option for centering the second element? 

 
This is the same question as how we best align a single element where we know the center of curvature of the first surface 

is decentered relative to the reference Bessel beam. Since there is only one degree of freedom, we need only measure the 

transmitted beam in one location because measuring in additional locations gives useless information. The best location is 

as far from the lens as is practical to minimize the tilt necessary to correct the decenter. Figure 7 shows the concept. 
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Fig. 7 shows a Lens on a seat decentered relative to a reference axis (upper), the deviation of a Bessel beam coaxial with 

the reference axis by the decentered lens (middle), and the deviation optimally removed by rotating the lens in its seat to 

make the optical axis intersect the reference axis somewhere inside the lens axially. 

 

Even though the 1 mm decenter of the seat in Fig. 7 is large and done so to make the example clear, the transmitted ray 

does not deviate by more than 41 µm by the time it reaches the second lens surface. Also, the beam's angular deviation is 

just 35 arc seconds for the 1.189° tilt required to bring the beam back to the reference axis measured 200 mm beyond the 

lens focus. In a real lens assembly, the decenter would be a maximum of perhaps 0.1 mm, so all the values here would be 

10 times less than in this example and quite modest in terms of typical lens tolerances. 

 

The important point is to minimize the gut ray deviation, the lens’s optical axis must intersect the reference axis, or Bessel 

beam, somewhere inside the lens axially. The exact location in the lens will depend on how far from the lens the beam 

deviation is measured to determine the optimization. From simulations with different powers for the lens, the angle to 

correct the decenter remains nearly the same for all cases until the power approaches zero, as in a meniscus with concentric 

surfaces.  



 

 
 

 

 

A consequence of having the optical axis and reference axis intersect somewhere inside the lens is that the centers of 

curvature will not lie on the reference axis but on opposite sides of it by about the decenter of the seat. This result differs 

from the usual approach to getting the centers of curvature of the axis of the rotary table, which is often used in lens 

centering. 

 

A further result of this alignment method is that neither center of curvature need be accessible. All that is necessary is that 

the initial Bessel beam is available for centering the detector. After each new surface is added, the Bessel beam is still well 

enough aligned to serve as the axis of the next lens added to the path. There is the caution that small errors will necessarily 

creep into the alignment where only one degree of freedom is available for alignment, as is the case for any alignment 

method. 

 

This has not been done before because the centers of curvature were needed to locate the optical axis of a lens and they 

are only visible very near the actual optical center of curvature. There were no other optical datums to center on until it 

was realized that a Bessel beam behaves as a single ray as it propagates, and its position and slope can be determined at 

any distance from a lens [8]. 

 

5. CONCLUSIONS 

We have outlined a method of alignment in which a Bessel beam is used as a reference axis because it propagates through 

an optical system like a paraxial ABCD ray. Since we assume this is how a Bessel beam propagates, we have shown 

additional theoretical and experimental results to support this conclusion. 

 

Based on the ray-like behavior of Bessel beam propagation, we show how to precisely align a single element using the 

Bessel beam and a single center of curvature. This gives sufficient information to align a lens in both tilt and decenter. 

Once the first lens is aligned, the next element uses the transmitted beam as the reference axis for the next element, which 

is then aligned the same as the first. This same procedure is followed along the optical path as each new element is added, 

assuming there are sufficient degrees of freedom for complete alignment in tilt and decenter. First-order diffracted Bessel 

beams permit an ABCD analysis of the assembly after each element is added to ensure the assembly matches the design. 

 

Finally, in cases where there are not sufficient degrees of freedom for complete alignment, we show how to optimize the 

alignment using the single degree of freedom available. This method differs from using a rotary table to locate centers of 

curvature on its axis. The reason for the difference is that until the idea that a Bessel beam behaves as a ray was introduced,  

there was no other way to center a lens other than to look at centers of curvature. 
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